
INTRUSION DETECTION FOR DISTRIBUTED APPLICATIONS.(Technology
Information)

by MATTHEW STILLERMAN, CARLA MARCEAU and MAUREEN STILLMAN

Attack codes masquerading as components of distributed applications leave the application
vulnerable to attacks. It is therefore necessary for applications to be able to recognize
themselves, and reject imposters. This can best be done by discovering the intrusion while it is
taking place. A prototype of an intrusion detection system is presented.

© COPYRIGHT 1999 Association for Computing
Machinery Inc.

A distributed application is vulnerable to attack code
masquerading as one of the components. An application
that has been trained to recognize "itself" can reject such
imposters.

The first step in defending against an information warfare
attack is discovering that the attack has occurred or is in
progress. Intrusion detection is the field that attempts to
discover attacks (whether from external hackers or internal
misuse), preferably while they are still under way [7]. Most
work in intrusion detection has focused on the network or
the individual computer host. Our organization, Odyssey
Research Associates (ORA), is studying intrusion
detection in distributed applications. In this article, we first
briefly review intrusion detection and computer
immunology, then describe our approach to providing
intrusion detection in distributed object applications. The
heart of our approach involves an empirical
characterization of the application, which we call the
application’s "self"; here we discuss the essential
components of such a characterization. We have built a
prototype intrusion detection system (IDS) to protect
applications [6] that are based on the Common Object
Request Broker Architecture (CORBA), which is
promulgated by the Object Management Group (OMG) [8].
Some of the results we have obtained from this system are
described here.

Intrusion detection. Complementing traditional computer
security mechanisms are relatively new tools, many in the
research stage, that offer the possibility of detecting
intrusions that have occurred in spite of security measures.
If computer security measures are analogous to the fences
and locks of the physical world, then intrusion detection is
like a burglar alarm system. An intrusion detection system
(IDS) might alert a human operator to a suspected intruder
or might take some immediate action (such as
disconnecting part of a network) to prevent damage.

One might think that the best characterization of the
success of an intrusion detection system is the fraction of
intrusions that it correctly recognizes, the detection
efficiency. However, of equal or greater importance is the

rate at which the IDS raises false alarms (the fraction of
normal behavior that is incorrectly labeled as intrusive).
The success of an intrusion detection system can thus be
characterized by both false alarm rate and its detection
efficiency.

There are two styles of intrusion detection: pattern-based
and anomaly-based. Pattern-based systems are explicitly
programmed to detect certain known kinds of attack.
Commercially available virus detection programs are a
familiar and successful example of pattern-based intrusion
detection. There are also several commercial intrusion
detection systems for networks that recognize well-known
intrusions. While pattern-based systems tend to have a
low rate of false alarms, they do have limitations. They
cannot detect novel attacks; their complexity grows as the
number of well-known attacks grows, introducing problems
of scale; and it is difficult to keep them updated as the
catalog of attacks grows.

Anomaly-based systems address these problems by
attempting to characterize normal operation and to detect
any deviation from normal. The challenge in such systems
is to define "normal" in a way that minimizes the false
alarm rate and maximizes the detection efficiency. It is
interesting to note that vertebrate immune systems use the
anomaly-based approach to detect intrusions; they
discover "self" empirically, and attack any cells exhibiting
proteins that are not self. Inspired by immunological
mechanisms, Stephanie Forrest at the University of New
Mexico has developed an empirical sense of "self" for
privileged Unix applications, such as sendmail and lpr.
Forrest has succeeded in detecting classic attacks on
those applications (see [1, 2]) and more recently on the
domain name service (DNS).(1) Our approach to intrusion
detection for CORBA applications is based on Forrest’s
work. Other research seeks to characterize user behavior
as normal or anomalous--see [3] in this issue.

Distributed object applications. Distributed object platforms
enable developers to design an application as a dynamic
set of objects whose interactions are independent of
locality, language of implementation, operating system,
and hardware platform. The distributed objects
communicate by means of common messaging
middleware, such as the OMG’s CORBA or the Distributed

Communications of the ACM July 1999 v42 i7 p62 Page 1

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

INTRUSION DETECTION FOR DISTRIBUTED APPLICATIONS.(Technology
Information)
Component Object Model (DCOM). Distributed object
platforms encourage fragmentation of the application into
objects to achieve greater flexibility and other advantages.
Yet each of the objects that comprise the application
exposes an external interface that might be the target of
an attack.

Even as it creates novel avenues of attack, however, the
world of distributed object systems also creates new
opportunities for integrated defense against attackers.
Combining application level information about the
interactions between objects with information at the
operating system and network levels, we may obtain a
more complete defense than is possible with only lower
level information.

Application level intrusion detection systems offer an
excellent opportunity for discovering misuse
attacks--insider attacks that attempt to subvert an
application. Such attacks can be especially insidious since
the attacker is typically familiar with the application and
security controls and has the best opportunity to subvert
them. Many violations of security result from legitimate
users performing unauthorized actions. An insider can
even mount a rogue client attack, by sending messages to
the application server from a client of his own design.

An application could, of course, include various tests and
checks to try to detect attacks, but it is preferable to supply
capabilities at the platform level that do not require explicit
programming support. ORA has built a prototype CORBA
Immune System to detect intrusions into and misuse of
distributed object applications, based on the empirical
approach to defining normal behavior. Because we define
an application’s "self" in terms of the middleware concepts
that underlie distributed objects, our approach applies to
any CORBA application. In fact, the principles are
generally applicable to middleware that supports
distributed object systems.

Definition of Self

Using the immunological approach to intrusion detection,
we characterize "self," testing possible intruders against
that characterization. The characterization is developed
empirically, by observing the specific application in
operation under typical conditions. The following sections
explain the method of doing that and describe its use in
the CORBA Immune System. Our definition of self
comprises the choices we make in each of four categories:

* Focus. Which entity’s self do we try to characterize?
What elements or parts of the entity can be either normal
or anomalous?

* Discriminating data. What aspects of the entity
discriminate between normal and anomalous? For
example, handwriting samples discriminate between
people.

* Signature of self. What abstraction of the discriminating
data characterizes the entity (as the forms of letters
characterize a person’s handwriting)?

* Detection algorithm. How do we compare a given entity
with self? This is analogous to the problem of deciding
whether two handwriting samples or two fingerprints are
sufficiently similar to be deemed a match.

Focus, organism and intruder. The organism is the entity
that is vulnerable to intrusion and that we seek to protect.
It consists of parts, which we will refer to as cells. In this
context, an intruder is a cell that appears to be a legitimate
and intact part of the organism, but is not. The intrusion
detection system for the organism focuses on each cell,
ascertaining whether it is normal (that is, benign) or
anomalous.

For example, Forrest’s method detects classic buffer
overflow attacks on privileged Unix processes running
programs such as sendmail, lpr, and named. When
successful, the attacker runs arbitrary code (such as a
shell) with the privilege (root privilege). Forrest examines
the behavior of specific processes that appear to be
executing the privileged program to see if they are
behaving "normally." The organism, in this case, is the
privileged program together with all of its processes, in its
customary use at the particular site or installation. The
cells of the organism are the processes that execute the
privileged program.

The organism we seek to protect is the CORBA application
and the cells are the clients that appear to be part of the
application. That is, any client of an application object is a
candidate for observation. The kinds of attack we hope to
be able to detect include:

* Circumventing program logic embedded in the client by
breaking or abusing the client program, or by using a
different program that masquerades as a legitimate client.

* Violations of trust, in which the user operates the client in
ways beyond his authorization (and are unusual), but are
not mechanically prevented.

The choice of organism corresponds roughly to which
kinds of intrusion are of interest. For instance, Forrest
focuses on privileged Unix processes, because attacks on
Unix systems often occur by subverting such processes.

Communications of the ACM July 1999 v42 i7 p62 Page 2

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

INTRUSION DETECTION FOR DISTRIBUTED APPLICATIONS.(Technology
Information)
Our choice of CORBA applications enables us to detect
many kinds of misuse, but not attacks in which the
implementation of an object is maliciously modified, or
attacks on the ORB itself.

Discriminating data. A school nurse decides whether a
student is sick by taking the child’s temperature. An
immune system T cell checks the shape of a peptide. A
store clerk checks the signature on a credit card slip. The
temperature, the peptide shape, and the handwritten
signature thus serve as discriminants between normal and
anomalous. Similarly, the intrusion detection system
measures some aspect of a cell to decide whether it is
normal or not. In order for us to do this, three conditions
must hold: there must be such a discriminant; the system
must be able to measure it; and we must know which
values of the discriminant are "normal."

What data can we use to characterize the self of the entity
on which we are focusing? The immune system uses
fragments of proteins called peptides, which are presented
on the surface of cells. Analogously, in computer systems
we are concerned about the behavior of entities at their
interface on their externally visible behavior. We observe
the behavior from some vantage point. For example,
Forrest characterizes a Unix process by the sequence of
calls it makes on the Unix kernel.

Note that in those experiments, the privileged processes
are not attacked through the system-call interface. Rather,
the system calls are a side effect of the attack, just as
fingerprints are a side effect of a burglar’s presence.
System calls are a good choice because they capture the
important effects of process behavior. CORBA applications
provide several reasonable choices for monitoring. As
mentioned earlier, this relatively new way of building
applications exposes more of their internal workings than
is exposed in traditional monolithic programs. CORBA
applications typically consist of several interacting parts
(the objects and clients) whose interactions, in the form of
request and reply messages, are mediated by the ORB.
We can observe the message traffic at the clients, at the
target objects, or possibly somewhere in between ("in the
ORB"). In our experiments, we monitor client behavior by
observing the client’s request messages as they arrive at
the server (our vantage point) of the target object. CORBA
interceptors, and Orbix filters in particular, provide a
convenient way of obtaining this information.

In addition to a discriminant (client/server traffic) and a way
to obtain it (filters and interceptors), we need to find out
what values of the discriminant are "normal." A
fundamental premise of our method is that we can
measure discriminating data about the cells of the

organism during a training period, during which we
assume that no intrusion occurs. The resulting training
data is summarized in a self database. During "live"
operation of the system, similar data is collected for each
cell and continuously compared with the normal data. If the
comparison shows a sufficient disparity, then the cell is
deemed anomalous and we suspect an intrusion.

Signature of self. When searching for a match to a given
fingerprint in a large collection, it is useful to construct a
compact description of the fingerprint in a standard way.
Such a description is readily compared with similar
descriptions of the elements of the collection. The
description captures the essential elements of the
fingerprint, while ignoring inessential variability. In some
sense, the compact description defines what it means to
compare two fingerprints. A good description makes it
likely that fingerprints from the same finger will be
identified, and makes comparison more efficient and more
precise.

Analogously, our intrusion detection system must compare
the message traffic on a connection between a client and a
server with similar training data in the self database. We
employ a short descriptor of such traffic, called a
signature, that is the basis of comparison. Signatures
enable the IDS to generalize from the message traffic on a
client/server connection during training, to similar "live"
traffic (with the same signature) that will also be declared
normal.

In general, the data collected from each cell results in one
or more signatures. The self database consists of all of the
unique signatures extracted from the training data.
Signatures of a cell during live operation are compared
with the self database.

Our current experiments with CORBA applications are
based on the following signature definition, which is
computed in two stages. First, the sequence of requested
methods is extracted from the sequence of request
messages that are sent on a connection. only the identity
of the methods and their sequence is preserved--all other
aspects of the requests, such as arguments, are ignored.
Second, the algorithm selects fixed-length subsequences
of consecutive methods from the sequence (for example,
sequences of four consecutive requests)--these are the
signatures. A sliding window algorithm [1] populates the
self database with all of the signatures present in the
training data.

Our choice of the projection that forms signatures must
balance detection efficiency against computational
efficiency. If we discard too much information, for example

Communications of the ACM July 1999 v42 i7 p62 Page 3

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

INTRUSION DETECTION FOR DISTRIBUTED APPLICATIONS.(Technology
Information)
by choosing extremely short subsequences, then nearly
every possible signature will be in the self database. On
the other hand, keeping too much information in the
signature may make comparisons too time-consuming. In
general, Forrest’s group has found that with the right
choice of discriminating data, even projections that discard
a great deal of information can provide adequate
detection.

Ideally, all signatures of the running application under
normal use are found in the self database. In other words,
the signatures of a modest sample of training data
"covers" actual normal data. In practice, we approximate
coverage by collecting training data until the self database
stops growing. With such coverage, it seems reasonable
that the signature of cells during actual use will typically be
found in the self database; this is largely borne out in
Forrest’s experiments. However, the convergence implied
by coverage can only be achieved practically if signatures
are small enough. Note that if we run the intrusion
detection system with a self database that does not have
coverage, we can expect large numbers of false alarms.
Thus, the choice of the signature-forming projection is the
subject of tradeoffs between detection efficiency and
practicality of coverage.

Detection. There still remains the problem of deciding in
near real time whether a cell is anomalous. That is, should
the IDS raise an alarm about a particular Unix process or
CORBA client? If every signature that can possibly occur
in normal behavior were guaranteed to be in the self
database, this would be a straightforward task. We would
test each signature of a CORBA client in the running
system and if any is not in the self database, the cell is
anomalous. In practice, things are not that simple,
because the self database is merely an approximation of
normal behavior. Fortunately, normal cells appear to
deviate only slightly from the self database, while
abnormal cells differ markedly. We therefore need to
measure the degree of deviation for each cell.

This is done in two stages: deciding for each signature
whether or not it is anomalous, and then aggregating those
results for all units collected from the cell in question. As
mentioned earlier, the self database contains all of the
signatures of all cells collected during the training period.
During live operation, the IDS detector compares each
new signature with the database. Anomalous signatures
are those that are not found in the database; all others are
normal. We have devised a finite state machine to
efficiently identify all anomalous subsequences in a
sequence of requests, using the sliding window technique.

We can expect that during actual operation most cells will

produce many normal signatures and some anomalous
ones, since even non-attack data contains isolated
anomalies due to the approximate nature of coverage.
Using an instantaneous measure of the cell’s
anomalousness together with a threshold of acceptable
derivation enables a convenient way to vary the sensitivity
of the IDS. The approach that we are pursuing is to base
the anomaly measure on the bunching of anomalies (from
one client). One would initially expect that isolated
anomalies are the result of poor coverage, while
concentrated bursts of anomalies signal an attack. This is
borne out in practice.

Experimental Results

We tested the CORBA Immune System in two
experiments. The first experiment was with LPA Vision [5],
a large distributed CORBA application for parts planning.
LPA Vision is widely used and controls access to
potentially sensitive information. To ensure confidentiality
and integrity, it implements security measures such as
authentication, access control, and accountability.

Unfortunately, we were not able to obtain data from actual
installations of LPA Vision, and our own resources were
too limited to adequately simulate actual use of the
application. We therefore decided, for experimental
purposes, to build a small application that, like LPA Vision,
also enabled multiple clients to access a central database.

The application we used in the second experiment is
called the Personnel Tracker. The design of the Personnel
Tracker follows a common pattern for CORBA applications
such as LPA Vision. A CORBA server maintains a central
database that associates information with its users. A
per-user client provides a graphical user interface and
performs password authentication. The application client
enforces various reasonable access control rules.

We ran the Personnel Tracker for a month to collect
training data, generated a self database, and then
challenged it with simulated rogue client attacks. Since
authentication is the responsibility of the client, the
Personnel Tracker depends on its client to restrict access
to the database. The rogue client simply allows its user
unrestricted access to the data. (This is admittedly a
simplistic example, although in fact, many CORBA
applications use this division of responsibility between
client and server to avoid authentication checks for every
server request.)

Figure 1 shows the growth and convergence of the self
database as training data is collected (the small "bump" at
the right side of the graph represents a very small amount

Communications of the ACM July 1999 v42 i7 p62 Page 4

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

INTRUSION DETECTION FOR DISTRIBUTED APPLICATIONS.(Technology
Information)
of novel behavior). After training was completed, we tested
the system by logging in and performing normal activities.
Some of these "normal" sessions were completely covered
by the training data. As we expected, a few sessions
contained scattered anomalies; a profile of one such
session can be seen in Figure 2.

[Figures 1-2 ILLUSTRATION OMITTED]

We then constructed two rogue clients to attack the
application. The first rogue client simulates a login but
does not enforce access control. Instead it gets a list of all
users and alters or deletes their data.

The anomaly graph for the rogue client (Figure 3) shows
very strong "bunching" of anomalies, which the CORBA
Immune System was immediately able to detect and flag
as anomalous. The second rogue client simply provides an
interface through which the user can issue arbitrary
requests to the server. The CORBA Immune System was
also able consistently to detect attacks by the second
rogue client.(2)

[Figure 3 ILLUSTRATION OMITTED]

We originally used a sliding window of length six, and later
experimented with shorter window lengths. Somewhat to
our surprise, a window length of two was just as good as a
window length of six in detecting attacks. This would seem
to support Forrest’s observation that very simple
signatures are sufficient. On the other hand, this data
comes from one very simple application and is necessarily
quite preliminary.

Conclusions

The current trend in computing toward open systems,
exemplified by CORBA, presents new opportunities for
intrusion detection due to exposed and well-characterized
internal application interfaces. Intrusion detection systems
for such applications--aimed at detecting intrusions into the
specific application--can complement other "systemic"
intrusion detection measures. Of course, such
application-level intrusion detection measures could have
been built into individual monolithic applications by hand.
We can now envision general mechanisms that
accomplish this without explicit programming. Our current
work takes a step in that direction.

Intrusion detection at the application level is different for
each application. An anomaly detection algorithm that
derives the standard of normality can be applied
empirically to each application separately. The definition of
self is the rule for how to do this. This relatively new

approach does not require any information about
previously seen attacks and it is inherently scalable.

To test our current and future hypotheses for "self," we
have built a prototype system that collects training data
and subsequently uses the data to detect intrusions. This
system will also help us to address the crucial question of
how to make the intrusion detection system as invisible as
possible to application developers and installers. A system
that imposes an onerously large burden on developers and
installers will simply not be used.

We have only begun to explore the immune system
analogy in computers. Vertebrate immune systems not
only detect infections, they respond to them and remember
them. What is more, the detection, response, and memory
is the collective behavior of a great many interacting
agents and is thus not sensitive to the demise of any one
of them. The resulting defenses are robust and efficient.
Biological immune systems have achieved their current
form through evolution-reproductive fitness empirically
achieves a balance between costs and benefits for the
organism. Can we employ fine-grained parallelism,
achieving defenses as a robust emergent property? Can
we incorporate memory and response? Can we empirically
and dynamically arrive at an optimal tradeoff between
detection efficiency, false alarm rate, and effort? We
believe that computer defenses are beginning their
evolution to more complex forms that will enjoy many of
the advantages of their biological counterparts.

Some CORBA Terminology.

The following concepts are illustrated in the figure
appearing here:

Object, An encapsulated combination of data and
functionality; the fundamental abstraction of
object-oriented programming.

Server. A process that manages one or more related
objects.

Client, A CORBA object or any program that calls (or
invokes) methods of an object.

Request. Abstractly, an invocation of a method of an
object, as declared in the object’s interface. Also, the
concrete message conveying that invocation from client to
server.

ORB. (Object Request Broker) The middleware layer that
mediates the transfer of messages (requests and replies)
between a client and an object.

Communications of the ACM July 1999 v42 i7 p62 Page 5

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

INTRUSION DETECTION FOR DISTRIBUTED APPLICATIONS.(Technology
Information)
Interceptor. A program that gains control of a message
(request or reply) within the ORB, between a client and an
object. Interceptors are used to transform, block, or react
to the message for application-defined access control
checking, and other housekeeping functions.

Filter, A form of interceptor provided by the Orbix ORB [4].

[ILLUSTRATION OMITTED]

(1) Known attacks provided a test for Forrest’s detector,
which does not incorporate knowledge of specific attacks.

(2) This second type of rogue client is easy to construct
systematically from the Interface Definition Language (IDL)
description of a CORBA server. In fact, such "clients" are
typically constructed by the developers for testing and
debugging the server.

REFERENCES

[1.] Forrest, S., Hofmeyr, S.A., and Somayaji, A. Computer
immunology. In Commun. ACM 40, 10 (Oct. 1997), 88-96.

[2.] Forrest, S., Somayaji, A., and Longstaff, T. A sense of
self for Unix processes. In Proceedings of the IEEE
Symposium on Computer Security and Privacy, Oakland,
Calif., IEEE Press, 1996.

[3.] Goan, T. A cop on the beat: Collecting and appraising
intrusion evidence. Commun. ACM 42, 7 (July 1999).

[4.] Iona Technologies PLC. Orbix Programmer’s Guide,
1997.

[5.] LPA Software. LPA Vision User Manual, 1998.

[6.] Marceau, C. et al. Architecture of a CORBA immune
system. Odyssey Research Associates Technical Report
TM-98-0005, 1998.

[7.] Mukherjee, B., Heberlein, L.T., and Levitt, K.N.
Network intrusion detection. In IEEE Network, 8 (May-June
1994), 26-41.

[8.] Object Management Group. The Common Object
Request Broker: Architecture and Specification (CORBA),
1998.

This work is supported by DARPA contract
F30602-97-C-0216, administered by U.S. Air Force
Research Lab, Rome, NY site.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

MATTHEW STILLERMAN (matt@oracorp.com) is a
principal scientist with Odyssey Research Associates in
Ithaca, NY.

CARLA MARCEAU (carla@oracorp.com) is a senior
principal scientist with Odyssey Research Associates in
Ithaca, NY.

MAUREEN STILLMAN (maureen@oracorp.com) is the
director of Odyssey Research Associates in Ithaca, NY.

Communications of the ACM July 1999 v42 i7 p62 Page 6

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

