
Parallel computation still not ready for the mainstream.
by Domenico Talia

Parallel computation has helped solve problems in applied science and engineering such as
high-performance applications. However, it is still not used in all areas of computer science
because of a lack of general-purpose parallel computing models. Parallel computing systems
include single instruction multiple-data (SIMD) machines and multiple-instruction-multiple data
computers.

© COPYRIGHT 1997 Association for Computing
Machinery Inc.

For the past 20 years, parallel computation has helped
solve many significant problems in applied science and
engineering, most notably those in high-performance
applications not implementable on sequential computers
[1]. However, parallel computing is still not used in all
areas of computer science nor has it found a significant
role in mainstream computing. Even if parallelism meets its
technical goals, achieving the status of a mature
technology in the next years remains a serious challenge.

A major factor limiting parallel computation in mainstream
computer science is the lack of general-purpose parallel
computing models. Parallel computing is a class of
systems including many different architectures--from
single-instruction-multiple-data (SIMD) machines to
distributed-memory, multiple-instrucion-multiple-data
(MIMD) computers and workstation clusters. Therefore, it
is difficult to define a unifying architectural model for
parallel computing, in the same way the von Neumann
model is the unifying model for sequential computing.
Moreover, some specialists who believe finding a unifying
model is just not possible have gone in another direction,
developing parallel software that lacks portability.

On the software side, the architecture differences in
parallel computers correspond to a large set of different
parallel models and languages often
architecture-dependent and that offer only partial solutions
to programming portable parallel applications in sequential
computing using standard languages, like C, Pascal, and
Fortran. Many parallel-programming languages used today
are of the low-level variety that require the programmer to
face the architectural issues of the parallel machine on
which the application runs.

On the other hand, high-level parallel languages abstract
from architectural issues but deliver unpredictable
performance on different architectures. Thus, porting the
same program to different parallel computers from, say, a
message-passing multicomputer to a shared-memory
multiprocessor can dramatically alter the machine’s
performance.

A Realistic Strategy

Finding solutions to these problems and limitations in
parallel computation requires two actions:

* Hardware. Make the design and implementation of
general-purpose parallel computers [2] capable of
supporting a wide range of programming models and
providing predictable performance.

* Software. Make the definition of programming models
architecture-independent, allowing abstraction and
portability across different parallel computers. At the same
time, make these models simple and expressive.

In the 1980s and 1990s, several general-purpose MIMD
computers were developed using microprocessors
connected through a communication network or shared
memory space. These systems, including the Intel iPSC,
the Sequent Symmetry, and the Transputer-based
multicomputers, were used in high-performance
applications. Although they do not completely spare
programmers from the architectural issues, they showed a
practical way to achieve high-level, general-purpose,
parallel computation. Today, such systems point the way
for development of new high-performance parallel
computers consisting of large numbers of general-purpose
microprocessors.

An important step to success is the definition of high-level,
architecture-independent languages to demonstrate that
parallel programming is no more difficult than sequential
programming.

Low-level approaches, such as the Parallel Virtual
Machine (PVM) and Message Passing Interface (MPI), are
driven by heterogeneous parallel computing, which tries to
offer, on different computers, library primitives for
parallelism and communication. These approaches partly
meet the portability goal but are based on tedious low-level
library functions and do not free the programmer from the
issues of concurrency, communication, and
synchronization. In fact, even though PVM and the MPI [3]
are de facto standards in parallel programming, their
related programming style looks in many respects like
assembler-level programming of sequential computers.

However, several proposed high-level approaches--the
Bulk Synchronous Parallel (BSP) [4], the LogP [5], and the

Communications of the ACM July 1997 v40 n7 p98(2) Page 1

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

Parallel computation still not ready for the mainstream.
Bird-Meertens Formalism [6]--may represent good
candidates for architecture-independent programming
models on general-purpose computers.

Other promising models are the skeleton-based [7] and the
actor-based [8] languages. Although these models suffer
from low performance, they represent an interesting
starting point toward architecture-independence because
they abstract from architectural issues and allow
predictable performance. If the parallel computing
community convinces itself that it needs a clear strategy
based on high-level languages to find a unifying model for
parallel computation, these models can be used to drive
this process.

Adopting this strategy would unite high-level programming,
generality, and high performance, leading parallel
computation to the computing mainstream.

Conclusion

The issues addressed here are not so simple. However,
the general-purpose approach I’ve outlined might
represent a significant step toward a very large use of
parallel computing in many application areas for
developing portable and standard parallel software.
Enlarging the parallel-computing community to the majority
of computer science users in both research and industry
and making parallel computers the standard computing
platforms of the next century may also be another step in
the right direction.

REFERENCES

[1.] Skillicorn, D B. and Talia, D., eds. Programming
Languages for Parallel Processing. IEEE Computer
Society Press, 1994.

[2.] May, D. Towards general-purpose parallel computers.
In Proceedings of CRAI Spring International Seminar on
Highly Parallel Processing, (Capri, Italy), May 1990.

[3.] Dongarra, J.J., Otto, S.W. Snir, M. and Walker, D. A
message passing standard for MPP and workstations.
Commun. ACM 39, 7, (Jul. 1996), 84-90.

[4.] Valiant, L G. A bridging model for parallel computation
Commun. ACM 33, 8 (Aug. 1990, 103-111.

[5.] Culler, D. et al. LogP: A practical model of parallel
computation. Commun. ACM 39, 11 (Nov. 1996)

[6.] Skillicorn, D. B. Architecture-independent parallel
computation. IEEE Comput. 23, 12 (Dec. 1990), 38-51.

[7.] Cole, M. Algorithmic Skeletons: Structured
management of parallel computation. In Research
Monographs in Parallel and Distributed Computing.
Pitman, London, 1989.

[8.] Agha, G. and Callsen, C.J. ActorSpace: An open
distributed programming paradigm. In Proceedings of
Symposium on POPP, (San Diego, Calif.), ACM Sigplan
Not, Jul. 1993, 23-32.

DOMENICO TALIA (talia@si.deis.unical.it) is a senior
researcher at the Institute of System Analisys and
Information Technology, Rende, Italy.

Communications of the ACM July 1997 v40 n7 p98(2) Page 2

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

